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Epigraphs

C’est de l’Inde que nous vient l’ingénieuse méthode d’exprimer tous les
nombres avec dix caractères, en leur donnant a la fois une valeur absolue et une valeur
de position, idée fine et importante, qui nous parait maintenant si simple que nous
en sentons à peine le mérite. Mais cette simplicité méme et l’extrème facilité qui en
résulte pour tous les calculs placent notre système d’Arithmétique au premier rang
des inventions utiles, et l’on appréciera la difficulté d’y parvenir, si l’on considère
qu’il a échappé au génie d’Archimède et d’Apollonius, deux des plus grands hommes
dont l’antiquité s’honore.

It is from India that the ingenious method comes from expressing all
numbers with ten characters, giving them both an absolute value and a posi-
tion value, a fine and important idea, which now seems so simple to us that we
hardly feel the merit. But this very simplicity and the extreme ease which re-
sults from it for all calculations place our Arithmetic system at the forefront of
useful inventions, and we will appreciate the difficulty of achieving this, if we
consider that it has escaped the genius of Archimedes and Apollonius, two of
the greatest and most honored men of antiquity.—Pierre-Simon Laplace, [Lp,
p. 404–405]
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SUMMARY

This document derives several theorems on terminating and repeating
decimals, along with illustrative examples. It is shown that every rational num-
ber has a unique decimal representation, except that some rational numbers
have two representations, such as 0.999 . . . = 1.

It is also shown which rational numbers result in terminating, pure re-
peating, and mixed repeating decimals. Some results for the lengths of termi-
nating and repeating portions are proved.

Using numeristics, developed in a separate document, an extension to
the usual decimal scheme is developed here: infinite decimals on the left side
of the decimal point, such as . . . 999 = −1.

Other number bases are briefly considered.

Another extension to the decimal scheme, equipoint analysis, is briefly
introduced here. This theory uses multiple levels of sensitivity to extend dec-
imal arithmetic to infinite and infinitesimal numbers, including infinite and
infinitesimal integers and rational numbers.
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DEFINITIONS AND NOTATION

A terminating decimal is a fraction whose decimal representation has a
finite number of digits. Examples include 0.25 and 3.728.

A repeating decimal (also called a recurring or a periodic decimal) has
an infinite number of digits, and the digits are periodic after a certain point.
Examples include 0.333 . . . = 0.3 and 0.81090909 . . . = 0.8109.

A terminating decimal can be considered a special case of a repeating
decimal, since, for instance, 0.25 = 0.25000 . . . = 0.250. However, as we use
the term, repeating decimal means only a non-terminating repeating decimal,
so that terminating and repeating decimals are distinct classes.

A pure repeating decimal is a repeating decimal in which all the digits
are periodic, i.e. the perodicity starts at the decimal point. A mixed repeating
decimal is any repeating decimal which is not pure, i.e. the digits after the
decimal point consist of a nonperiodic portion followed by a periodic portion.

A non-repeating infinite decimal has an infinite number of digits to the
right of the decimal point, but the digits never become periodic.

A ten-pure or regular number is a positive integer whose prime factors
include only 2 or 5 or both. The first few ten-pure numbers are 2, 4, 5, 8, 10, 16,
20, and 25.

A ten-free number is a positive integer whose prime factors are all diif-
ferent from 2 or 5. The first few ten-free numbers are 3, 7, 9, 11, 13, 17, 19, and
21.

A ten-mixed number is a positive integer whose prime factors include
2 or 5 or both, and other prime factors. The first few ten-mixed numbers are 6,
12, 14, 15, 18, 22, 24, and 26.

In the following, uppercase letters denote integers, e.g. A, B, N, which
are positive unless otherwise noted.

Whenever we write a fraction M
N

, we assume 0 < M < N and N ≥ 2,
unless otherwise noted.
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Subscripted lowercase letters denote decimal digits, e.g. d1 or dn. A
string such as d1d2d3 . . . dn denotes an integer or decimal represented by those
digits. For example, if d1 = 1, d2 = 2, and d3 = 5, then d1d2d3 = 125, and
0.d1d2d3 = 0.125.

For any terminating decimal 0.d1d2d3 . . . dn, the integer d1d2d3 . . . dn is
called the terminant. For example, 125 is the terminant of 0.125.

Similarly, for any repeating decimal 0.d1d2d3 . . . dne1e2e3 . . . em, the inte-
ger
e1e2e3 . . . em is called the repetend. (Articles in MathWorld, e.g. [WRD], use the
word “reptend” instead, but this almost certainly originated as a typo, since no
standard references published prior to MathWorld used this spelling.)

When we consider fractions M
N

, we usually consider only those that are
in lowest terms, i.e. in which M and N are relatively prime, also known as
coprime. We call such fractions reduced.

We should note that if M
N

is not reduced and the denominator N is ten-
free, then in the reduced form J

K
, the denominator K will still be ten-free, since

any prime factor in K must also be in N, and N contains no ten-pure prime
factors. Similarly, if M

N
reduces to J

K
and N is ten-pure, then K is ten-pure.

However, if M
N

reduces to J
K

and N is ten-mixed, then K may be ten-mixed,
ten-pure, or ten-free, depending on which prime factors M and N have in
common.

The stint of a fraction M
N

is the number of digits between the decimal
point and the end of the non-repeating portion of the decimal representation
of M

N
. The stint is the number of digits in the terminant, including leading

zeros but not trailing zeros, unless they are followed by a nonzero repetend.
For example, the stint of 3

4 is 2, since 3
4 = 0.75 and there are two non-repeating

places in the decimal; it is not 3 even though 3
4 = 0.750. The stint of 1

12 is 2

because 1
12 = 0.083 and there are two non-repeating digits 08. We denote the

stint of 1
N

as Λ(N).

The period of a fraction M
N

, is the number of digits in the repeating
portion of the decimal representation of M

N
. The period is the number of digits

in the repetend, including leading and trailing zeros in the repeating portion.
For example, the period of 3

7 = 6, since 3
7 = 0.428571. The period of 1

11 is 2

because 1
11 = 0.09. The period is always derived from the minimum number of
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decimal places necessary to represent M
N

. For example, the period of 1
3 is 1 even

though 1
3 = 0.33, and the period of 4

5 is 0 even though 4
5 = 0.80. We denote the

period of 1
N

as λ(N).
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FUNDAMENTAL THEOREM

The decimal expansion of any fraction M
N is either a terminat-

ing decimal or a repeating decimal.

PROOF. M
N

is converted to a decimal expansion by long division of M
by N. In long division by N, each remainder is less than N, and the first re-
mainder is M. The remainder at any point determines all digits of the quotient
that follow. At some point, the remainder will either be 0, in which case the ex-
pansion terminates, or a nonzero number which has occurred before, in which
case the expansion repeats periodically. In the latter case, the period is the
number of steps between the recurring remainders and is less than N, since
only remainders from 1 to N − 1 are possible. �

We will see below that the converse is also true: any terminating or
repeating decimal represents some fraction M

N
.

Figure 1 shows a typical long division yielding a repeating decimal.
The final remainder of 1 is the same as the first remainder (the original divi-
dend M), so continued division will repeat the digits of the quotient peridi-
cally.

0.142857

7 1.000000
7
30
28
20
14
60
56

40
35
50
49
1

FIG. 1:
Computation of repetend of 1

7
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Table 2 shows stints and periods for the first unit fractions.

N Λ(N) λ(N) 1
N

2 1 0 0.5
3 0 1 0.3
4 2 0 0.25
5 1 0 0.2
6 1 1 0.16
7 0 6 0.142857
8 3 0 0.125
9 0 1 0.1

10 1 0 0.1
11 0 2 0.09
12 1 1 0.083
13 0 6 0.076923
14 1 6 0.0714285
15 1 1 0.06
16 4 0 0.0625
17 0 16 0.0588235294117647
18 1 1 0.05
19 0 18 0.052631578947368421
20 2 0 0.05

TABLE 2: Stints and periods of
1
N

for N = 1 to 20, where

Λ(N) = stint of 1
N

,

λ(N) = period of 1
N
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TERMINATING DECIMALS

The decimal representation of a fraction M
N is terminating if

and only if N is ten-pure.

PROOF. Let M
N

= 0.d1 . . . dQ for someQ and T = d1 . . . dQ. Then M
N

= T
10Q ,

and N | 10Q. Thus N is ten-pure. The converse follows by reversing these
steps. �

The stint of 1
N , Λ(N), where N is ten-pure and N = 2A5B , is

max(A,B).

PROOF. max(A,B) is the minimum Q such that 2A5B | 10Q. �

Given any reduced fraction M
N , the length of the terminant is

independent of M and is thus equal to Λ(N), and the termi-
nant of M

N is M times the terminant of 1
M .

PROOF. Let P = the stint of 1
N

and T its terminant, and let Q = the stint

of M
N

and U its terminant. Then T = 10P
N

and U = M10Q
N

. P is the minimum value
for which N | 10P and likewise Q is the minimum value for which N |M10Q.
Since M and N are coprime, they have no factors in common, so N | 10Q. Q
must be the minimum value for which this holds, since if we had S < Q and
N | 10S, then we would haveN |M10S andQ would not be the minimum. But
P is also the minimum value for which N | 10P . Hence P = Q and U =MT .

For ten-pure numbers H and N, Λ(HN) ≤ Λ(H) + Λ(N).

PROOF. If H and N are ten-pure, they are of the form H = 2A5B and
N = 2C5D . We then have Λ(HN) = Λ(2A+C5B+D) = max(A + C,B + D) ≤
max(A,B) + max(C,D) = Λ(H) + Λ(N). �

Terminating decimals 13



For ten-pure N, Λ(NK) = KΛ(N).

PROOF. As before, N = 2C5D . Then Λ(HK) = Λ(2KC5KD) =
max(KC,KD) = Kmax(C,D) = KΛ(N). �

Table 3 demonstrates this last theorem for N = 2 and K from 1 to 10.
The terminants are powers of 5, since 2N5N

2N = 5N .

K 2K 1
2K Λ(2K)

1 2 0.5 1
2 4 0.25 2
3 8 0.125 3
4 16 0.0625 4
5 32 0.03125 5
6 64 0.015625 6
7 128 0.0078125 7
8 256 0.00390625 8
9 512 0.001953125 9

10 1024 0.0009765625 10

TABLE 3: Decimals and stints of
1

2K for K from 1 to 10
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REPEATING DECIMALS
ARE MULTIVALUED

A repeating decimal is a convergent geometric series. A finite geomet-
ric series

x =
N∑

K=M

aK = aM + aM+1 + aM+2 + aM+3 + . . . + aN

can easily be summed through a recurrence formula. When we multiply both
sides by a:

xa = aM+1 + aM+2 + aM+3 + aM+4 + . . . + aN+1,

we observe that xa + aM = x + aN+1. We therefore have x − xa = aM − aN+1,
which yields

x =
aM − aN+1

1 − a ,

the well-known result
N∑

K=m

aK = aM + aM+1 + aM+2 + aM+3 + . . . + aN =
aM − aN+1

1 − a .

For the case of an infinite geometric series, the numeristic theory of
infinite series postulates adding a single infinite element∞ to the real numbers.
The resulting number system is called the projectively extended real numbers
and is described in detail in [CN].∞ is simultaneously greater and less than all
finite real numbers. We also have:

∞ + k =∞, where k is any finite number

k∞ =
∞
k

=∞, where k is any nonzero finite number

1
0 =∞
1
∞ = 0
∞ = −∞

Since +∞ = −∞, a∞ has two real values for most a, a−∞ = 0 and a+∞ =
∞. This in turn means that most convergent series have two sums, one finite
and one infinite:

∞∑
K=M

aK = aM + aM+1 + aM+2 + aM+3 + . . . =
{
∞, a

M

1 − a

}
.
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For example,

0.3 = 3
∞∑
N=1

10−N

= 3
0.1 − 10∞+1

1 − 0.1

= 3
{

0.1 −∞
0.9

,
0.1 − 0

0.9

}
= 3
{
∞, 1

9

}
=
{
∞, 1

3

}

The infinite value can also be justified by comparison with ∞ · 0 =∑∞
N=1 0, which may take any finite or infinite value, and yet each term of which

is infinitely smaller than the corresponding term of any geometric series with
nonzero a.

Decimals with zero repetends, called nildecimals, are an exception to
the two-value rule:

0.0 = 0 · 0.1 = 0
{
∞, 1

9

}
= {R, 0} = R.

See Nildecimals and nonidecimals (p. 25).

Since only finite values are usually of interest with repeating decimals,
and since almost all of the proofs in this document use calculations which are
valid only for finite values, we will usually ignore the infinite value of repeat-
ing decimals and use only the finite values. We also usually ignore the indeter-
minate nature of nildecimals and use only the single value 0.
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PURE REPEATING DECIMALS

For any pure repeating decimal, 0.d1 . . . dP = R
10P−1 , whereR =

d1 . . . dP is the repetend and P is the period.

PROOF. A repeating decimal is a convergent geometric series. 0.d1 . . . dP
is a convergent geometric series whose first term is 0.d1 . . . dP and whose term
ratio is 10−P . The sum is therefore

0.d1 . . . dP
1 − 10−P

=
R

10−P

1 − 10−P
=

R

10P − 1
. �

The decimal expansion of a reduced fraction M
N is a pure re-

peating decimal if and only if N is ten-free.

PROOF. Let M
N

be the reduced form of R
10P−1 which is given above. Since

M and N have no common factors, N | 10P − 1. Each prime factor of N also
divides 10P − 1. But 2 and 5 can never divide 10P − 1, since the last digit of
10P − 1 is always 9. N is therefore ten-free. These steps are reversible, so the
converse easily follows. �

Given any reduced fraction M
N , the length of the repetend is

independent ofM and is thus equal to λ(N), and the repetend
of M

N is M times the repetend of 1
M .

PROOF. Let P be the period of 1
N

and R its repetend, and let Q be the

period of M
N

and S its repetend. Then R = 10P−1
N

and S = M(10Q−1)
N

. P is the
minimum value for which N | 10P − 1, and likewise Q is the minimum value
for which N |M(10Q −1). Since M and N are coprime, they have no factors in
common, so N | 10Q − 1. Q must be the minimum value for which this holds,
since if we had T < Q and N | 10T − 1, then we would have N | M(10T − 1)
and Q would not be the minimum. But P is also the minimum value for which
N | 10P − 1. Hence P = Q and S =MR.
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The period λ(N) of M
N never exceeds N − 1.

PROOF. All remainders in the long division of M by N are in the range
1 to N − 1. Whenever any of them occurs a second time, a repetend is estab-
lished. Hence the period is always within this range. �

We now define a repnine of length N as 9192 . . . 9N = 10N − 1, a repunit

of length N as 1112 . . . 1N = 10N−1
9 , and a repdigit of length N as d1d2 . . . dN =

d
9 (10N − 1) for any digit d. We denote a repunit of length N as U(N).

Every prime M, except 2, 3, and 5, divides a repunit U(P) for
some P < M.

PROOF. Since 1
M

= R
9U(P) for some P < M, where R is the repetend, we

have RM = 9U(P). Since M 6= 3, M | U(P). �

For M = 3, P = M, since 3 | 111. Since repdigits are multiples of
repunits, the same is true for every repdigit.

If the repetend of M
N isR and λ(N) =N−1, then the repetend

of J
N is a cyclic permutationof R.

PROOF. Since 0 < M, J < N and λ(N) = N − 1, every integer from
1 to N − 1, including M and J , must occur as one of the remainders in the
calculation of the decimal expansion of M

N
. The numerator is always the first

remainder in any such calculation, so J will occur as a remainder at some later
point in the calculation of the digits of M

N
. When it does, the digit in M

N
at

that point will be the first digit of J
N

. Since subsequent digits depend only on

the current remainder, the digits of J
N

will repeat those of M
N

but starting at a

different point, i.e. the digits of J
N

will be a cyclic permutation of the digits of
M
N

. �

If λ(N) =N − 1, then N is prime.
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PROOF. If N were composite, then M
N

would reduce to J
K

for some M

and K < N. Since λ(N) can never exceed N − 1, λ(K) could not exceed K − 1,
which is less than N − 1. But by the previous theorem, λ(K) = λ(N) = N − 1.
Hence N is prime. �

The converse of this theorem is not true. Two conterexamples are λ(3) =
1 and λ(11) = 2.

If λ(N) < N −1, then there may be multiple cycles of length λ(N). This
can be expressed more precisely as follows.

λ(N) | φ(N), where φ(N) is the Euler totient function.

PROOF. The Euler totient function φ(N) is the number of integers that

are relatively prime to N. It is thus the number of integers M < N such that M
N

is reduced. The number of cycles of length λ(N) is φ(N)
λ(N) . �

Tables 4 through 7 show the example N = 21, where φ(N) = 12 and
λ = 6.

M M
21 M M

21 M M
21

1 0.047619 8 0.380952 15 0.714285
2 0.095238 9 0.428571 16 0.761904
3 0.142857 10 0.476190 17 0.809523
4 0.190476 11 0.523809 18 0.857142
5 0.238095 12 0.571428 19 0.904761
6 0.285174 13 0.619048 20 0.952380
7 0.333333 14 0.666666 21 0.999999

TABLE 4: Decimal representations of all M
21

Pure repeating decimals 19



M M
21 M M

21

1 0.047619 2 0.095238
10 0.476190 20 0.952380
16 0.761904 11 0.523809
13 0.619048 5 0.238095
4 0.190476 8 0.380952

19 0.904761 17 0.809523

TABLE 5: The two cycles for which M
21 is reduced

M M
21

3 0.142857
9 0.428571
6 0.285174

18 0.857142
12 0.571428
15 0.714285

TABLE 6: The cycle for which M
21 reduces to M

7

M M
21

7 0.3
14 0.6
21 0.9

TABLE 7: The cycle for which M
21 reduces to M

3

λ is not multiplcative for ten-free integers, i.e. for ten-free H
and N, λ(HN) is not necessarily equal to λ(H)λ(N), and
λ(NK) is not necessarily equal to Kλ(N).
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PROOF. Tables 8 and 9 show some examples where multiplicativity
does not hold, and some where it does. �

λ(H)·
H N 1

H
1
N λ(H) λ(N) λ(N) λ(HN) 1

HN HN

3 11 0.3 0.09 1 2 2 2 0.03 33
3 13 0.3 0.076923 1 6 6 6 0.025641 39
7 11 0.142857 0.09 6 2 12 6 0.012987 77

11 13 0.09 0.076923 2 6 12 6 0.006993 143

TABLE 8: λ(H)λ(N) compared to λ(HN)
for select H and N

K·
N 1

N λ(N) K λ(N) λ(NK) 1
NK NK

3 0.3 1 2 2 1 0.1 9
3 0.3 1 3 3 3 0.037 27
7 0.142857 6 2 12 42 0.0204081632653061224489795 49

91836734693877551
3 0.3 1 4 4 10 0.0123456789 81

11 0.09 2 2 4 22 0.0082644628099173553719 121
13 0.076923 6 2 12 78 0.0059171597633136094674556 169

2130177514792899408284023
6686390532544378698224852
071

TABLE 9: λ(NK) compared to Kλ(N)
for select N and K

In the decimal expansion of M
N , if N is a ten-free prime and

λ(N) is even, then the sum of the two halves of the repetend
is a repnine of the length of the halves, e.g. 1

7 = 0.142857 and
142 + 857 = 999.
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PROOF. Let L = 1
2λ(N) be the length of each half, and let R be the

repetend. The decimal expansion is a pure repetend since N is ten-free. M
N

is
reduced for allM sinceN is prime. We then have M

N
= R

102L−1 , andN | 102L−1 =
(10L − 1)(10L + 1). Since N is prime, either N | 10L − 1 or N | 10L + 1. But if
N | 10L − 1, then λ(N) would be L, whereas we have assumed λ(N) = 2L. So
N | 10L + 1.

ComputeA = M
N
(10L+1)−1, which is an integer in the range 0 to 10L−1,

since N | 10L +1 and M < N. A then has at most L digits. If it has fewer than L
digits, left pad it with zeros to L places. A then has exactly L digits in all cases.
Denote A as a1a2 . . . aL.

Next compute B = 10L − 1−A, which is also an integer in the range 0 to
10L − 1, and denote it b1b2 . . . bL.

Finally compute a1a2 . . . aLb1b2 . . . bL = A10L+B =
[
M
N
(102L + 1) − 1

]
10L+

10L − 1−
[
M
N
(10L + 1) − 1

]
= M

N
(10L + 1)10L − M

N
(10L − 1) = M

N
(10L + 1)(10L − 1) =

M
N
(102L − 1) = R.

A and B are thus the two halves of the repetend, and their sum A +B =
10L − 1 = 9U(L). �
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MIXED REPEATING DECIMALS

For any fraction M
N

, we have shown that the decimal expansion is a
terminating decimal if and only if N is ten-pure, and a pure repeating decimal
if and only if N is ten-free. By elimination then, we have established that the
decimal expansion is a mixed repeating decimal if and only if N is ten-mixed.
We will show this more positively below.

For a ten-mixed integer N, we will find it helpful to factor N into ten-
pure and ten-free components. We define the ten-pure part of a ten-mixed
integer N as the product of all the ten-pure prime factors of N (the 2’s and 5’s
in the prime factorization of N), and similarly the ten-free part of a ten-mixed
integer N as the the product of all the ten-free prime factors of N (everything
but the 2’s and 5’s in the prime factorization of N). For example, the ten-pure
part of 12 is 4, and the ten-free part of 12 is 3. Obviously, for any ten-mixed N,
if P is the ten-pure part and F is ten-free part, then N = PF.

The decimal expansion of a fraction M
N is a mixed repeating

decimal if and only if N is ten-mixed.

PROOF. We begin by factoring N into its ten-pure part P and ten-free
part F. Since P and F have no factors in common, they are coprime.

We can express M
N

as the sum of a pure repeating decimal and a termi-
nating decimal by setting M

N
= A

P
+ B

F
and solving for A and B. We then have

A
P
+ B

F
= AF+BP

N
, so M = AF + BP . From elementary number theory it is known

that if P and F are coprime, then there exist nonzero integers C and D such
that CF +DP = 1. Then A =MC, B =MD, and M

N
= MC

P
+ MD

F
.

MC
P

can be represented by a terminating decimal, plus an integer if
|MC| ≥ |P |. MD

F
can be represented by a pure repeating decimal, plus an inte-

ger if |MD| ≥ |F|. The sum is a mixed repeating decimal. Since these steps can
easily be reversed, the converse follows. �

A few examples of this process:
1
6 = 2

3 −
1
2 = 0.666 . . . − 0.5 = 0.166 . . . = 0.16
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5
6 = 1

3 + 1
2 = 0.333 . . . + 0.5 = 0.833 . . . = 0.83

1
12 = 1

3 −
1
4 = 0.333 . . . − 0.25 = 0.083 . . . = 0.083

11
12 = 2

3 + 1
4 = 0.666 . . . + 0.25 = 0.916 . . . = 0.916

For any ten-mixed N, Λ(N) = Λ(P) and λ(N) = λ(F), where
P is the ten-pure part of N and F is the ten-free part of N.

PROOF. We compute the decimal representation of an arbitrary reduced
fraction M

N
. Let C = 10Λ(P). Since C

P
is the terminant of P , it is an integer, P | C,

and MC
P

is an integer. Since M
N

is reduced, M and N have no common factors,
and since C and P are ten-pure, MC

P
and F have no common factors. Therefore,

MC/P
F

= MC
N

is a reduced fraction. Since F is ten-free, the decimal representation
of MC

N
is a pure repeating decimal whose period is λ(F). But since MC

N
= CM

N

and C is the Λ(P) power of 10, the decimal representation of MC
N

is derived
from the decimal representation of M

N
by shifting the decimal point left by Λ(P)

places. The integer to the left of the decimal point is the terminant of M
N

, and
the pure repeating decimal to the right of the decimal point is the repetend of
M
N

. Therefore, Λ(N) = Λ(P) and λ(N) = λ(F). �
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NILDECIMALS AND NONIDECIMALS

We define the nilrepetend as the repetend 0, and a nildecimal as any
decimal representation with an explicit nilrepetend. An example of a nildeci-
mal is 0.50.

Nildecimals and decimal representations ending with a finite number
of trailing zeros, while they can be considered as distinct, duplicate represen-
tations of the decimal without the trailing zeros, are such trivial duplications
that we usually ignore trailing zeros and do not consider decimals with them
to be distinct.

We define the nonirepetend (the Latin prefix noni- means 9) as the repe-
tend 9, and a nonidecimal as any decimal representation with the nonirepe-
tend. Nonidecimals are special since they are nontrivial duplicate representa-
tions, as we shall soon see.

There is one pure nildecimal, 0.000 . . . = 0.0, and one pure nonidecimal,
0.999 . . . = 0.9. There are many mixed nildecimals and nonidecimals, e.g. e.g.
0.35000 . . . = 0.350 and 0.24999 . . . = 0.249.

Nildecimals are obviously duplicates of terminating decimals, but the
following establishes a similar result for nonidecimals.

0.9 = 1.

PROOF. 0.9 = 0.9
1−0.1 = 1. �

0.0102 . . . 0P9 = 10−P .

PROOF. 0.0102 . . . 0P9 = 0.0102 ...0P 9
1−10P = 0.9·10−P

0.9 = 10−P . �

These theorems mean that nonidecimals are nontrivial duplicate dec-
imal representations of nildecimals and terminating decimal representations,
e.g. 3.9 = 4 and 0.349 = 0.34 + 0.009 = 0.34 + 0.01 = 0.35.
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The second theorem implies that we can convert a nonidecimal to a ter-
minating decimal by adding 1 to the terminant and deleting the nonirepetend,
and reverse it by subtracting 1 from the terminant and adding the nonirepe-
tend.

Nonidecimals may occur through certain operations on decimals, e.g.
when we multiply the decimal representation of 1

N
by N for ten-free or ten-

mixed N. Examples:

3 · 0.3 = 0.9 = 1

7 · 0.142857 = 0.999999 = 0.9 = 1

12 · 0.083 = 0.96 + 0.03 + 0.009 = 0.999 = 0.9 = 1

Terminating decimals and corresponding nonidecimals are
the only nontrivial duplicate forms among all decimal repre-
sentations.

PROOF. A duplicate can occur only if adding or subtracting zero
changes the digits in a nontrivial way. We will show the conditions under
which this occurs by adding or subtracting zero in the form of 0.9 − 1. First we
look at some examples.

0.5 + 0.9 − 1 = 1.49 − 1 = 0.49

0.49 + 1 − 0.9 = 1.49 − 0.9 = 0.5

Next consider 3
11 = 0.27. We have

0.27 + 0.99 = 1.2627

0.27 + 0.9999 = 1.272627

0.27 + 0.999999 = 1.27272627

. . .

0.27 + 0.99 = 1.27

and so
3

11
= 0.27

= 0.27 + 0.9 − 1

= 0.27 + 0.99 − 1
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= 1.27 − 1
= 0.27

Now consider π = 3.14159 . . . 502 . . ..
3.14159 . . . 502 . . . + 0.9 = 4.04159 . . . 502 . . .

3.14159 . . . 502 . . . + 0.99 = 4.13159 . . . 502 . . .
3.14159 . . . 502 . . . + 0.999 = 4.14059 . . . 502 . . .

3.14159 . . . 502 . . . + 0.9999 = 4.14149 . . . 502 . . .
3.14159 . . . 502 . . . + 0.99999 = 4.14158 . . . 502 . . .

3.14159 . . . 502 . . . + 0.99999 . . . 9 = 4.14159 . . . 402 . . .
3.14159 . . . 502 . . . + 0.99999 . . . 99 = 4.14159 . . . 492 . . .

3.14159 . . . 502 . . . + 0.99999 . . . 999 = 4.14159 . . . 501 . . .
so

π = 3.14159 . . . 502 . . .
= 3.14159 . . . 502 . . . + 0.9 − 1
= 4.14159 . . . 502 . . . − 1
= 3.14159 . . . 502 . . .

These examples should make it clear that only when we start with a
terminating decimal, i.e. when we can append the nilrepetend and thus have
an infinite number of consecutive zeros, will the digits be nontrivially affected
by the subtraction of zero.

0 is the only terminating decimal representation which does not have
a nonidecimal duplicate, as 0 + 0.9 − 1 = 0.9 − 1 = −0. The minus form is the
duplicate in this case. �
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INFINITE LEFT DECIMALS

We now explore extending decimal places infinitely far to the left of
the decimal point. We define an infinite left decimal as a decimal expansion
extending infinitely far to the left. More generally, we use the term left along
with any of our previous terms to denote a corresponding decimal represen-
tation to the left of the decimal point. For example, a a left repeating decimal
has a repetend which extends infinitely far to the left, such as . . . 333 = 3. Nat-
urally, we use the term right to refer to the decimal representations extending
to the right that we considered above. For example, we now call a decimal
representation such as 0.333 . . . = 0.3 a right repeating decimal.

Just as a right repeating decimal is a convergent geometric series, so
a left repeating decimal is a divergent geometric series. Divergent series in
general are sometimes controversial, but numeristics also provides a coherent
framework for understanding them, which is explored in detail in [CD]. As
we did with right repeating decimals, for left repeating decimals, we use the
projectively extended real numbers and the identities

+∞ = −∞
a∞ = {∞, 0} for a 6= 0, 1,∞

N∑
K=M

aK = aM + aM+1 + aM+2 + aM+3 + . . . + aN =
aM − aN+1

1 − a
∞∑

K=M

aK = aM + aM+1 + aM+2 + aM+3 + . . . =
{
∞, a

M

1 − a

}

A left repeating decimal therefore has two values, one infinite and one
finite. While the infinite value may seem more natural for an infinite left dec-
imal and a finite value for an infinite right decimal, both values are valid for
left and right. Following this principle leads to an easy and consistent theory.

However, as we did with infinite right decimals, in the theorems and
proofs below for infinite left decimals, we will usually not be interested in the
infinite value, and the processes we use will usually be valid only for finite
values. Therefore, we will usually ignore the infinite value and work only with
the finite values.

. . . 999 = −1.
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PROOF. . . . 999 = 9 = 9(1 + 10 + 100 + 1000 + . . .) = 9(100 + 101 + 102 +
103 + . . .) = 9

1−10 = − 9
9 = −1. �

Left nonidecimals can be used as an alterative to right decimal repre-
sentations:

98 = 9 − 1 = −2
927.5 = 9 − 71.5 = −72.5

Other left repetends produce negative numbers: 3 = . . . 333 = 3 · 101 +
3 · 102 + 3 · 103 + . . . = 3

1−10 = − 1
3 . This is the negative of the corresponding right

repeating decimal 0.3 = 1
3 . This generalizes as follows.

A pure repeating decimal consisting of the same repetend R
on both the left and the right is always zero, e.g. 3.3 = 0.

PROOF. Let Q be the period. The first term of the left repeating decimal
is R, and the first term of the right repeating decimal is R

10Q . The value of the
left repeating decimal is R

1−10Q , and the value of the right repeating decimal is
R/10Q

1−10−Q = R
10Q−1 . The value of the total decimal is therefore zero. �

Every real number has an infinite number of decimal repre-
sentations with left repetends.

PROOF. If we choose any repetend R and use it in a pure repeat-
ing decimal on both the left and right, the value is zero. Zero thus has an
infinite number of decimal representations with left repetends, for example
3.3 = 147.147 = 09.09 = 0. If we add the usual decimal representation of a real
number r to any of these forms of zero, then we obtain an alternate decimal
representation of r. Since there are an infinite number of possible repetends,
there are an infinite number of alternate representations for r. �

Some examples:
1
2 = 0.5 = 0.5 + 1.1 = 1.61

= 3.83 = 09.590 = . . .
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1
3 = 0.3 = 0.3 + 1.1 = 1.4

= 3.6 = 09.42 = 142857.476190 = . . .

2 = 2 + 1.1 = 13.1

= 35.3 = 0911.09 = . . .

π = 3.14145265 . . . + 1.1 = 14.25270376 . . . = . . .

The signum of a decimal representation is the minus or plus symbol
that indicates sign at the front of the representation. We have already seen that
infinite left decimals allow us to represent some negative numbers without a
signum. We will find that this is true of all negative numbers.

The remaining theorems in this chapter illustrate the similarities and
differences between left and right decimals. Each theorem has two parts: a
result for right decimals that we have demonstrated in previous chapters, fol-
lowed by a result for left decimals which we prove here.

A right terminating decimal without a signum (which uses
only a right terminant) can represent any positive fraction of
the form M

N , where 0 < M < N, and N is ten-pure. This rep-
resentation is unique.

A left terminating decimal without a signum (which uses only
a left terminant) can represent any positive integer. This rep-
resentation is unique.

PROOF. A left terminating decimal is simply the conventional represen-
tation of a positive integer. �

A pure right repeating decimal without a signum (which uses
only a right repetend) can represent any positive fraction of
the form M

N , where 0 ≤ M ≤ N, and N is ten-free. When

M = 0, the representation is the pure right nildecimal 0.0,
and when M = N, the representation is the pure right non-

idecimal 0.9. This representation is unique.
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A pure left repeating decimal without a signum (which uses
only a left repetend) can represent any negative fraction −MN ,
where 0 ≤ M ≤ N, and N is positive and ten-free. When
M = 0, the representation is the pure left nildecimal 0, and
when M =N, the representation is the pure left nonidecimal
9. Within this type of representation, the decimal is unique.

PROOF. The representation of the positive fraction M
N

is a pure right
repeating decimal. The same repetend on the left gives a representation of its
negative. �

Examples:

− 1
3 = −0.333 . . . = −0.3

= . . . 333 = 3

− 2
3 = −0.666 . . . = −0.6

= . . . 666 = 6

− 3
3 = −1 = −0.999 . . . = −0.9

= . . . 999 = 9

− 1
11 = −0.090909 . . . = −0.09

= . . . 090909 = 09

− 3
11 = −0.272727 . . . = −0.27

= . . . 272727 = 27

A mixed right repeating decimal without a signum (which
uses only a right terminant and a right repetend) can repre-
sent any positive fraction M

N , where 0 < M < N, and N is
ten-mixed. This representation is unique.

A mixed left repeating decimal without a signum (which uses
only a left repetend and a left terminant) can represent any
positive or negative fraction M

N , whereN is ten-free. This rep-
resentation is unique.
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PROOF. The terminant portion of a mixed left repeating decimal repre-
sents a positive integer J . If we extend the left repetend right to the decimal
point, this becomes a pure left repeating decimal, which can represent − L

N
,

where 0 ≤ L ≤ N and N is ten-free. If we subtract the pure repeating decimal
from the original mixed decimal, the repetend cancels, and we are left with an
integerK, which may be positive or negative. Thus the mixed decimal isK− L

N
.

Since −1 ≤ − L
N
≤ 0, i.e. it is somewhere within the negative unit interval, K − L

N

relocates − L
N

to the interval between two integers K − 1 and K.

Given any M
N

, we compute the integer K such that K − 1 ≤ M
N
< K and

L such that −1 ≤ − L
N
< 0, and add the left decimal representations of K and L

N

to obtain the left decimal representation of M
N

.

Fractions and left decimals are thus mapped uniquely and completely
in both directions. �

To illustrate this process, we consider examples from the following four
cases. The first two occur when M is a multiple of N and M

N
is an integer.

• Any positive integer added to the pure left nonidecimal re-
sults in a mixed left nildecimal, i.e. a left terminant preceded
by the nilrepetend. This is a trivial duplicate of the ordinary
decimal representation of that integer. Examples:

4 = −1 + 5 = . . . 999 + 5 = . . . 0004 = 04

15 = −1 + 16 = . . . 999 + 16 = . . . 0015 = 015

• Any negative integer subtracted from the pure left nonideci-
mal results in a left terminant preceded by the nonirepetend.
Examples:

−4 = −1 − 3 = . . . 999 − 3 = . . . 996 = 96

−15 = −1 − 14 = . . . 999 − 14 = . . . 985 = 985

• Any integer added to a left repeating decimal other than
the left nonidecimal eventually stops carrying and leaves the
repetend intact after that point. The result is a left terminant
preceded by a left repetend. Examples:

32
3 = 11 − 1

3 = . . . 333 + 11 = . . . 344 = 344
122
11 = 12 − 10

11 = . . . 909090 + 12 = . . . 909102 = 09102
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• Any integer subtracted from a left repeating decimal eventu-
ally stops borrowing and leaves the repetend intact after that
point. The result is a left terminant preceded by a left repe-
tend. Examples:

− 32
3 = −10 − 2

3 = . . . 666 − 10 = . . . 656 = 656

− 122
11 = −11 − 1

11 = . . . 090909 − 11 = . . . 090898 = 09898

A mixed right repeating decimal plus a left terminating deci-
mal without a signum can represent any positive fraction M

N ,
where N is ten-mixed. This representation is unique.

A mixed left repeating decimal plus a right terminating dec-
imal without a signum can represent any positive or nega-
tive fraction M

N , where N is ten-mixed. This representation
is unique.

PROOF. We begin by factoring N into its ten-pure part P and ten-free
part F. Since P and F have no factors in common, they are coprime.

We can express M
N

as the sum of a mixed left repeating decimal and a
right terminating decimal by setting M

N
= A

P
+ B

F
and solving for A and B. We

then have A
P
+ B

F
= AF+BP

N
, so M = AF + BP . As before, we use the theorem that

if P and F are coprime, then there exist nonzero integers C and D such that
CF +DP = 1. Then A =MC, B =MD, and M

N
= MC

P
+ MD

F
.

MC
P

can be represented by a right terminating decimal, plus an integer
if |MC| ≥ |P |. MD

F
can be represented by a mixed left repeating decimal. The

sum is a mixed left repeating decimal plus a right terminating decimal. Since
these steps can easily be reversed, the converse follows. �

Some examples:
1
6 = 2

3 −
1
2 = 0.666 . . . − 0.5 = 0.166 . . . = 0.16

= − 1
3 + 1

2 = . . . 333.5 = 3.5

− 1
6 = −0.16

= − 2
3 + 1

2 = . . . 666.5 = 6.5
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5
6 = 1

3 + 1
2 = 0.333 . . . + 0.5 = 0.833 . . . = 0.83

= − 2
3 + 3

2 = . . . 666 + 1.5 = ..667.5 = 67.5

− 5
6 = −0.83

= − 1
3 −

1
2 = . . . 333 − 0.5 = . . . 332.5 = 32.5

1
12 = 1

3 −
1
4 = 0.333 . . . − 0.25 = 0.083 . . . = 0.083

= − 2
3 + 3

4 = . . . 666.75 = 6.75

− 1
12 = −0.083

= − 1
3 + 1

4 = . . . 333.25 = 3.25
11
12 = 2

3 + 1
4 = 0.666 . . . + 0.25 = 0.916 . . . = 0.916

= − 1
3 + 5

4 = . . . 333 + 1.25 = . . . 334.25 = 34.25

− 11
12 = −0.916

= − 2
3 −

1
4 = . . . 666 − 0.25 = . . . 665.75 = 65.75

To summarize:

A left terminating decimal plus a right terminating or repeat-
ing decimal without a signum can represent any positive ra-
tional number, with a terminating decimal being duplicated
by a nonidecimal.

A left terminating or repeating decimal plus a right terminat-
ing decimal without a signum can represent any positive or
negative rational number, with no duplication.

A left terminating or repeating decimal plus a right terminat-
ing or repeating decimal without a signum can represent any
positive or negative rational number, with an infinite number
of duplicate representations for every real number.
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OTHER BASES

Entirely analogous results ensue in any other number base, also called
a radix. What is called a decimal point in base 10 is called a radix point in an
arbitrary base, and the decimal representation can be called a radix represen-
tation.

For example, consider base 2, the familiar binary system. We can define
a two-pure number as any power of 2, a two-mixed number as an even number
that is not a power of 2, and a two-free number as an odd number. We also
define a unirepetend representation as one with a repetend of 1, such as 0.12 or
0.012.

Then the radix-two representation of a fraction is terminating or
unirepetend if and only if the denominator is two-pure, mixed repeating if and
only if the denominator is two-mixed, and pure repeating non-unirepetend if
and only if the denominator is two-free.

Examples in this base:
1
2
=

1
102

= 0.12 = 0.012

1
5
=

1
1012

= 0.00112

λ2(5) = 4

1012 · 00112 = 5 · 3 = 15 = 2λ2(5) − 1

12 = −1

0.12 = 1
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INFINITY AND ZERO

Decimal representations of infinity

There is one number in our extended number system for which we have
not yet developed a right or left decimal, namely ∞. To do this, we need to
return to our decision to use only the finite value of a∞ = a−∞. Now we use the
infinite value. ∞ can be thus represented by any right or left repeating decimal,
such as:

1 = 101 + 102 + 103 + . . . + 10∞

=
10∞+1 − 101

10 − 1
=

10∞ − 10
9

=
∞− 10

9
=
∞
9

=∞

0.1 = 10−1 + 10−2 + 10−3 + . . . + 10−∞

=
10−∞+1 − 10−1

10−1 − 1
=

10−∞ − 0.1
0.9

=
∞− 0.1

9
=
∞
0.9

=∞

In previous chapters, we used the projectively extended real numbers
to obtain finite results for infinite left decimals. We now examine another ex-
tended real number system, the affinely extended real number. Both of these
systems are explored in detail in [CN]. The affinely extended system adds two
distinct infinite elements, +∞ and −∞. In this system, a+∞ = +∞ and a−∞ = 0,
so we do not have any choice between finite and infinite values of a±∞. Infinite
left decimals are always equal to +∞, and infinite right decimals are always
finite, so the sum of an infinite left and an infinite right decimal is always infi-
nite. +∞ can be represented by any infinite left decimal without a signum, and
−∞ can be represented by any infinite left decimal with a minus signum.

While the affinely extended real number system may initially appear
more palatable than the projectively extended system, there are two problems
with using the affinely extended system: (1) it leads to a more difficult theory
with various conflicting approaches, and (2) the results are not fully consistent
with quantum renormalization. Renormalization, which has been repeatedly
verified by physical experiment, is a mathematical procedure which uses as-
sumptions similar to those of the projectively extended system. These consid-
erations are examined in more detail in [CD].
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Unfolding infinity and zero

To understand infinity more deeply, we extend the number system
again. This time we unfold infinity and zero into multiple infinite and infinites-
imal values. To do this we first develop a way of handling multiple values
simultaneously.

A numeristic class is the simultaneous presence of zero or more values.
It is potentially multivalued number or other numeric or number-like construc-
tion. Classes have a flat structure: Every number is a single valued class; a class
containing a single number is identical to the number.

Classes are somewhat similar to sets, but the main difference is that
classes are flat, whereas sets introduce extra structure on top of their elements.
Since we don’t use sets here, we borrow set theoretical notation for class con-
cepts. For example, {+1,−1} is a class containing these two numbers. The
flatness property of classes means that a = {a} for any single number a.

A class containing multiple numbers distributes operations on it and
statements about it over each element. For example, {+1,−1}+5 = {+1+5,−1+
5} = {+6,+4}.
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microscope view of unfolded 0

Infinity and zero 37



0 · ∞′−2 · ∞′ −∞′ ∞′ 2 · ∞′

.............................
...................

...............
.............

............
...........

..........
..........

..........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
..........
..........
...........
............
.............

..............
.................

........................
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................................

0−2 −1 1 2

FIG. 11:
Line of infinities with microscope view of
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We extend the number system into multiple infinite and infinitesimal
values using unfoldings or sensitivity levels. The ordinary real numbers are
the folded real numbers. Every number becomes a multivalued class when it
is unfolded at a greater sensitivity level, and the class of all unfoldings is the
unfolded real numbers. For 0 and ∞, we denote representative units within
their unfoldings as 0′ and∞′.

Figure 10 shows the real number line with the unfolding of 0 in an in-
finitely expanded space, where the single element 0 becomes a multivalued
class of unfolded multiples of 0′, the class R0′. The bubble in this diagram is
called a microscope. Figure 11 shows the unfolding of ∞ into a multivalued
class consisting of multiples of∞′.

Equality is relative to the sensitivity level: if two elements a and b are
identical at the unfolded level, we denote this as a =′ b (say “a unfolded equals
b” or “a equals prime b”). If they are members of the unfolding of the same
real number, we write a = b (“a equals b” or “a folded equals b”). For example:

0′ = 2 · 0′ (folded)
0′ 6=′ 2 · 0′ (unfolded)

0′2 =′ 0′ (unfolded)
There may be multiple unfoldings: an unfolded number 0′ may itself be un-
folded into a second unfolding. If two expressions are identical at all unfold-
ings, we write a ≡ b (“a is equivalent to b”), e.g.

(a + b)2 ≡ a2 + 2ab + b2.
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The unfolding of ∞ includes both positive and negative multiples of
∞′, such as 2 · ∞′ and −3 · ∞′. At the folded level, such numbers are equal and
both positive and negative, but at the unfolded level, they are distinct and are
either positive or negative but not both, e.g.:

2 · ∞′ = −3 · ∞′

2 · ∞′ 6=′ −3 · ∞′

2 · ∞′ >′ 0

−3 · ∞′ <′ 0.

We add to this the postulate of the projectively extended real numbers
that +∞ = −∞. Thus we have

−∞′ = −∞ =∞ =∞′

10−∞
′
= 10−∞ = 10∞ = 10∞

′
= {0,∞}

log 0′ = log 0 = log∞ = log∞′ =∞ ⊃′ {∞′′,−∞′′}

Infinite integers and rational numbers

Given any sensitivity unit 0′, the unfolded infinite numbers
R

0′
contain

unfolded integers, rationals, and irrationals. Similarly, the unfolded infinitesi-
mal numbers R0′ contain unfolded rationals and irrationals.

If M is an infinite integer and n is a finite integer, then
M

n
is an infinite

rational, and
n

M
is an infinitesimal rational or zero rational.

If M and N are both infinite integers, then
M

N
may be either rational or

irrational, and either infinite, zero, or perfinite (neither infinite nor zero).
M

N
can be irrational even though it is a ratio of integers, because M and N have
an infinite number of digits.

A perfinite irrational can be unfolded into a class which includes such
ratios. For example,

√
2 = 1.414 . . ., when unfolded, includes elements of the

form 1.414 . . . d(∞′), where d(n) is the n-th digit:
√

2 = 1.414 . . . d(∞′) =′ 1414...d(∞′)
10∞′

≡ M1

N1
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√
2 = 1.414 . . . d(∞′ + 1) =′

1414...d(∞′ + 1)
10∞′+1

≡ M2

N2

√
2 = 1.414 . . . d(2∞′) =′ 1414...d(2∞′)

102∞′ ≡ M3

N3

A perfinite irrational can also be thought of as having a repetend of
infinite length:

√
2 =

M1

N1
=′ 10 · 0.1414 . . . d(∞′)

≡ 1.414 . . . d(∞′)1414 . . . d(∞′)1414 . . . d(∞′)1414 . . .

Another way of finding such infinite integers is with a continued frac-
tion:

√
2 = 1 +

1

2 +
1

2 +
1

2 +
. . .

.

The convergents (partial evaluations) of this continued fraction are
1
1

,

3
2

,
7
5

,
17
12

,
41
29

,
99
70
, . . .

an
bn
, . . ., where bn are Pell numbers and an are one-half the

companion Pell numbers or Pell-Lucas numbers. These numbers satisfy the
relations

an = 2an−1 + an−2 = an−1 + 2bn−1

bn = 2bn−1 + bn−2 = an−1 + bn−1

an =

(
1 +
√

2
)n

+
(

1 −
√

2
)n

2

bn =

(
1 +
√

2
)n
−
(

1 −
√

2
)n

2
√

2

So for M and N we have

M =

(
1 +
√

2
)∞′

+
(

1 −
√

2
)∞′

2

N =

(
1 +
√

2
)∞′
−
(

1 −
√

2
)∞′

2
√

2
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DECIMAL STRUCTURE
OF REAL NUMBERS

Folded real numbers

A folded real number r, identified with a decimal expansion, has the
form

r =
+∞∑

m=−∞
dm10m,wheredm ∈ Z10 = 0, 1, . . . , 9.

For example, for √
2 = 1.414 . . .

we have
dn = 0 for n > 0.
d0 = 1
d−1 = 4
d−2 = 1
d−3 = 4

. . .

This form allows for infinite left decimals (p. 28). It also includes du-
plicates, as discussed in Nildecimals and nonidecimals (p. 25) and Decimal
representations of infinity (p. 36).

Unfolded real numbers

In general, an unfolded real number is the sum of one or more of: (1)
an infinite number, (2) a perfinite number, and (3) an infinitesimal number.

In the first unfolding, an arbitrary real number r takes this form:
r ≡ r+1∞′ + r0 + r−1 0′

≡
+∞′′−1∑
m=−∞′′

d+1,m10m∞′ +
+∞′′−1∑
m=−∞′′

d0,m10m +
+∞′′−1∑
m=−∞′′

d−1,m10m 0′,
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where ∞′ :≡ 1
0′ and r+1, r0, r−1 are folded real numbers, and we choose ∞′′ so

that this becomes a single sequence from smallest infinitesimal to largest infi-
nite:

10−∞
′′ ∞′ ≡ 10+∞′′ and 10−∞

′′ ≡ 10+∞′′ 0′ ≡ 10+∞′′ ∞′−1

∞′ ≡ 102∞′′

∞′′ ≡ 1
2

log10∞
′ ≡ −1

2
log10 0′.

Then

r ≡
+∞′′−1∑
m=−∞′′

d+1,m102∞′′+m + d0,m10m + d−1,m10−2∞′′+m

≡
3∞′′−1∑
m=−3∞′′

dm10m

where dm =


d+1,m−2∞′′ for +∞′′ ≤ m ≤ +3∞′′ − 1
d0,m for −∞′′ ≤ m ≤ +∞′′ − 1
d−1,m+2∞′′ for −3∞′′ ≤ m ≤ −∞′′ − 1

or dm = dk,m−2k∞′′ for (2k − 1)∞′′ ≤ m ≤ (2k + 1)∞′′ − 1 and k = +1, 0,−1.

In the second unfolding,

r ≡ r+2∞′2 + r+1∞′ + r0 + r−1 0′ + r−2 0′2

≡
+∞′′−1∑
m=−∞′′

d+2,m10m∞′2 + d+1,m10m∞′ + d0,m10m + d−1,m10m 0′ + d−2,m10m 0′2

≡
+∞′′−1∑
m=−∞′′

d+2,m104∞′′+m + d+1,m102∞′′+m + d0,m10m + d−1,m10−2∞′′+m + d−2,m10−4∞′′+m

≡
+∞′′−1∑
m=−∞′′

+2∑
k=−2

dk,m102k∞′′+m

≡
+5∞′′−1∑
m=−5∞′′

dm10m.

In the n-th unfolding,

r ≡
+∞′′−1∑
m=−∞′′

+n∑
k=−n

dk,m102k∞′′+m

≡
+(2n+1)∞′′−1∑
m=−(2n+1)∞′′

dm10m.
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This includes the ultimate unfolding, where n =∞.
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